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Abstract
Migration of animal cells is based on the interplay between actin polymerization at the front,
adhesion along the cell-substrate interface, and actomyosin contractility at the back. Active gel
theory has been used before to demonstrate that actomyosin contractility is sufficient for
polarization and self-sustained cell migration in the absence of external cues, but did not consider
the dynamics of adhesion. Likewise, migration models based on the mechanosensitive dynamics of
adhesion receptors usually do not include the global dynamics of intracellular flow. Here we show
that both aspects can be combined in a minimal active gel model for one-dimensional cell
migration with dynamic adhesion. This model demonstrates that load sharing between the
adhesion receptors leads to symmetry breaking, with stronger adhesion at the front, and that
bistability of migration arises for intermediate adhesiveness. Local variations in adhesiveness are
sufficient to switch between sessile and motile states, in qualitative agreement with experiments.

1. Introduction

In multicellular organisms like ourselves, each and every cell has the ability to actively move [1]. While cell
migration of all cells plays an essential role during development, most cell types become quiescent in the
mature organism, except for special situations like wound healing and immune surveillance. Reawakening of
the ability of locomotion enables metastatic tumor cells to spread throughout the body [2]. Single-cell
motility relies on the interplay between many proteins, but the main ones are filamentous actin, the motor
protein non-muscle myosin II, and the adhesion receptors of the integrin-family. The main cellular processes
contributing to cell migration are the formation of actin-driven protrusion at the leading edge, force
transmission onto the substrate mediated by integrin-based cell-matrix adhesion, and retraction of the rear
by actomyosin contraction [3]. It is a striking observation that single cells can switch between sessile and
motile states and also between different directions of migration [4–8]. To explain this bistable migration
behaviour in the absence of external cues, one has to identify the underlying mechanisms for spontaneous
symmetry breaking (SSB).

To simplify both experimental observation and theoretical modeling, cells can be placed on
one-dimensional (1D) tracks [8–12], reducing the effective dimensionality of the problem. Such 1D tracks
can be made e.g. with microcontact printing, laser lithography or microfluidics. A natural framework to
describe cell migration in 1D is active gel theory [13–15]. This model class can represent both
polymerization and contractility in one coherent mathematical framework. In particular, active gel theory
has been used to demonstrate that actomyosin contractility can be a mechanism for SSB that leads to
self-sustrained cell motility, namely through an instability during which myosin localizes to the rear of the
cell [16]. Due to the spatial nature of the model, intracellular flows and concentration fields are accessible
and can be compared to experiments [17]. Furthermore, the effects of external perturbations, such as
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optogenetics [18], can be incorporated into active gel models as local perturbations [19, 20], again allowing
for a comparison of experiment and theory.

An alternative mechanism for SSB is the dynamics of adhesion. Adhesion receptors like the integrins are
known to bind and rupture with mechanosensitive rates [21]. It is well known that non-linear adhesion rates
lead to bifurcations in the adhesion dynamics [22, 23], which in turn lead to non-trivial adhesion profiles
and stick-slip motion of cell adhesion [24, 25]. In general, stick-slip motion is typical for sliding friction with
non-linear dynamics [26, 27]. Several bond models have been suggested to explain cell movement on 1D
lines [7, 8, 28]. Such models focus on the left and right cell edges, where they consider local force balance and
retrograde flow, but they do not represent intracellular actin flow in a spatially resolved manner. The
interplay between actin flow and adhesion dynamics is usually present in molecular clutch models [29–33],
but this model class usually assumes that SSB has already occured and in general combines many individual
rules to a complicated simulation framework.

Here we aim at representing both intracellular flow and adhesion dynamics in a transparent active gel
model that allows us to perform a comprehensive mathematical analysis, using the powerful tools available
for partial differential equations. Recently, a somewhat similar approach has been presented by extending the
myosin-driven active gel model by adhesion dynamics, leading to oscillatory states and stick-slip migration
[34]. However, in this model adhesion played only a minor role, while in practise, it might play a dominant
role for SSB. Experimentally, it is not clear if one process dominates over the other. While some studies
indicate that the cell front forms first via enhanced actin polymerization [35, 36], others suggest an increase
in rear contractility as main mechanism [37–39]. In both cases, the onset of polarization is assigned to the
actomyosin system. In contrast, Hennig et al hypothesized that a spontaneous loss of adhesion at one cell
edge is responsible for the observed sudden decrease in traction of cells on 1D tracks [11]. This in turn causes
the retraction of the prospective rear and initiates migration without pre-established cytoskeletal polarity.

To investigate the role of adhesion dynamics in the context of contractility-based cell migration, here we
propose a minimal 1D active gel model in which an explicit adhesion field is coupled to the intracellular flow
of actin in similar manner as in previously suggested bond models [7, 28], but now in a spatially resolved
fashion. The adhesion density is treated as a reaction-diffusion system, where mechanosensitive bonds are
subject to load sharing, which is known to be an essential non-linear effect leading to stick-slip in cell
adhesion [22, 25]. In combination with symmetric edge polymerization, this approach constitutes a minimal
model for a novel and simple motility mechanism for 1D cell migration, where SSB results from the adhesion
dynamics. For intermediate adhesiveness, robust motility exists in a bistable regime and our model predicts
adhesion and intracellular flow profiles in very good agreement with experimental observations.

Having established this mechanism in our 1D-framework allows us to numerically study motility
initiation by applying local perturbations to the adhesion density, similar to what has been demonstrated
before for optogenetics [19, 20]. We show that nonlinear perturbations are required to switch from sessile to
motile states and, in doing so, demonstrate the potential fundamental role of adhesion by forming the
prospective rear. Furthermore, the interaction with a structured environment, e.g. a spatially varying
concentration of ligands in the substrate, can be incorporated. In general, the model correctly recapitulates
haptotactic behaviour [40] and we describe its predictions for cells on patterned lines [8, 12].

This work is structured as follows. In section 2 we introduce our model, derive consistent boundary
conditions for the adhesion density and formulate a dimensionless boundary value problem (BVP). We then
explain step-by-step the underlying polarization mechanism and how polarity is converted into directed
migration by polymerization-driven flow. We show that active forces and adhesion-mediated friction have to
be balanced and that motility is only possible in an intermediate regime of adhesiveness. In section 3 we
analyse the effect of external perturbations, and in section 4 we conduct a numerical study of cells on
patterned lines to explore the full range of behaviour predicted by our model.

2. Minimal model for adhesion-based motility

2.1. Model definition
In the following we aim to identify the minimal set of assumptions required to model the interplay between
intracellular flow and adhesion during 1D cell migration. Figure 1 sketches the main elements. We model the
passive response of the cytoskeleton as a purely viscous, infinitely compressible fluid, which is locally
subjected to an active stress σact, modeling the effect of actomyosin contraction. Since here we focus on the
role of adhesion, σact is taken to be a constant, although earlier work also considered spatially resolved
contractility [16, 34]. The constitutive stress equation then reads

σ (x, t) = η∂xv(x, t)+σact, (1)
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Figure 1. Schematic sketch of the 1D model: actomyosin contraction and edge polymerization of actin drive retrograde flow of a
viscous bulk. Substrate friction is created by adhesion complexes, which are formed by binding/unbinding of mechanosensitive
bonds, subject to load sharing, cf the zoomed-in sketch. The cell length is a dynamic quantity and couples the two edges elastically.

with the viscosity η and the actin flow velocity v(x, t). In the molecular clutch model, the actin flow is
coupled to the external substrate by receptor-ligand bonds mediated by proteins of the integrin-family,
slowing down the retrograde flow and allowing for force transmission onto the substrate [29, 31, 41].
Assuming a linear relation between friction and local density of closed adhesion bonds a(x, t) [7, 12, 24, 42],
local force balance implies

∂xσ (x, t) = ξ v(x, t)(a0 + a(x, t)) . (2)

ξ is an effective friction coefficient and a0 represents a baseline level of friction caused by other, non-specific
dissipative interactions between actin, membrane and substrate. Combining equations (1) and (2) yields a
single stress equation

η

ξ
∂x

(
∂xσ (x, t)

a0 + a(x, t)

)
= σ (x, t)−σact. (3)

Single integrin bonds cluster to focal complexes and mature into so-called focal adhesions by recruiting
further adapter proteins. We use a reaction-diffusion system [43, 44] to describe the effective evolution of the
adhesion density

∂ta(x, t) = ron − roff (x, t)a(x, t)+D∂2
xa(x, t) . (4)

In a coarse-grained manner, we assume a dense distribution of ligands on the substrate and describe
adhesion as a continuous field. The integrin receptors are abundant in the plasma membrane and in addition
can switch between inactive and active states [45], thus allowing for a dynamic recruitment of bound
adhesion molecules. They are assumed to attach with a constant association rate ron, while the dissociation
rate roff is mechanosensitive and increases exponentially under load [22]. This choice has recently found a
rigorous foundation in a statistical model for receptor-ligand binding at the cell membrane [46] and is
consistent with experiments on membrane binding [47]. The constant association rate then results if one
averages over the membrane fluctuations. Using the principle of load sharing, the local stress is distributed
among the bonds at each position, corresponding to the force per bond typically used in models for adhesion
sites [22, 23, 28, 48], such that

roff (x, t) = r0 exp

(
|σ (x, t) |

f0 (a0 + a(x, t))

)
. (5)

A small decrease in a increases the force per bond on the remaining ones, which in turn facilitates
detachment and can result in a rupture cascade [23, 48]. The parameter a0 in the exponent is introduced to
avoid a divergence of the off-rate for very small adhesion densities. In principle, its value could be different
from the baseline adhesion level introduced in equation (2). However, we have checked that the precise value
of a0 in equation (2) has only a small effect and does not change any results qualitatively, while a0 has a more
crucial role in equation (5) (cf section 2.3). Since one would expect that a baseline level of friction affecting
the actin flow would physically also buffer the force experienced by the adhesive bonds to some degree and to
reduce the number of free parameters in our model, we set the two to be equal. f 0 represents the
characteristic force scale at which single bonds tend to rupture. The off-rate without load is given by r0.
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Because even clustered integrins in adhesions are subject to thermal movement, we include a diffusive
term with diffusion constant D [49]. It furthermore stabilizes the system [43, 44] and ensures continuity of
the adhesion profiles. However, the change in adhesion density due to binding should be dominant, while
diffusion should only be relevant on long time scales. For a value of 10−1µm2 s−1, chosen by us, the change
in adhesion on the length scale of cells (∼10µm) is around D/(10µm2)2 = 10−3 s. Binding is of the order of
0.1 s−1 (cf appendix B) and is thus the more frequent process. Experimental measurements suggest an even
smaller diffusivity of around 10−3µm2 s−1 [49] such that diffusion does not impair the predictions by our
model. Since adhesions stay stationary relative to the substrate, while the migrating cell moves over them
[50], advection does not occur in the lab frame of reference.

To close the equations for stress and adhesion density, we have to formulate appropriate boundary
conditions (BCs). Since we deal with a moving cell, the positions of the right and left boundary l±(t),
corresponding to the cell edges, as well as the cell length, L(t) = l+(t)− l−(t), will vary over time. However,
due to volume regulation of cells, the typical cell size should not vary much. We therefore apply symmetric
and elastic stress BCs [16, 19]

σ (l±, t) =−k
L(t)− L0

L0
, (6)

with effective spring constant k and reference length L0, which both result from volume regulation.
Actin predominantly polymerizes in the vicinity of the plasma membrane, i.e. at the left and right

boundaries in our model. Non-motile cells show symmetric polymerization that is matched by retrograde
flow. In motile cells, polymerization induces membrane protrusions at the leading edge, while
depolymerization is observed in the bulk and rear of the cell. Since our effective 1D description is an average
over the height and width of the lamellipodium, we assume the same constant polymerization velocity vp
pointing outward at the two boundaries. Bulk depolymerization, which is necessary for conservation of total
actin mass, is neglected [14] in agreement with the assumptions of an infinitely compressible gel. Then,
polymerization offsets the movement of the cell edges and the flow velocity of the gel like

l̇± (t) = v(l±, t)± vp. (7)

Finally, starting from a system of reaction-diffusion equations for bound and unbound adhesion sites
and assuming conservation of the total number of binding sites, we can derive BCs for a(x, t) by taking the
limit of an infinite reservoir of unbound sites (cf appendix A) and obtain

∂xa(l±, t) =− l̇± (t)

D
a(l±, t) . (8)

Because closed bonds are not advected, but only diffuse, the ratio of edge movement and diffusion arises here.

2.2. Non-dimensionalisation
We non-dimensionalize the equations by rescaling length by L0, time by the inverse off-rate without load
1/r0 , stress by the effective spring constant k, and adhesion density by k/(L20ξ r0). By transforming to the
internal coordinate of the cell, u= (x− l−)/L, we can map the moving BVP to the unit interval with
stationary boundaries. Then, the global movement of the cell is absorbed in the advection velocity field
ṽ= Ġ/L+ L̇/L(u− 1/2) with the cell’s center position G= (l+ + l−)/2. The full nondimensional BVP reads

L2

L2
∂u

∂uσ (u, t)

A+ a(u, t)
= σ (u, t)−σact, (9a)

σ (u±, t) =−(L(t)− 1) , (9b)

l̇± (t) =
1

L

∂uσ (u±, t)

A+ a(u±, t)
± vp, (9c)

∂ta(u, t)− ṽ(u, t)∂ua(u, t) =R− exp

(
1

F
|σ (u, t) |

A+ a(u, t)

)
a(u, t)+

D
L2

∂2
ua(u, t) , (9d)

∂ua(u±, t) =−La(u±, t)

D
l̇± (t) . (9e)

In addition to σact and vp, our model is described by five dimensionless parameters: L=
√

ηr0/k
describes the viscous time scale relative to the binding time.R= ξ L20ron/k determines the binding rate.
F = f0/(ξ L20r0) represents the typical rupture force of closed bonds andA= a0ξ L20r0/k corresponds to the
baseline friction. Lastly,D = D/(L20r0) is the diffusion of closed bonds.

4



New J. Phys. 26 (2024) 073039 V Wössner et al

Figure 2. Adhesion-based polarization mechanism without polymerization and for constant stress. (a)–(d) Four qualitatively
different scenarios for the local steady state adhesion density depending on the baseline frictionA, and the on-rateR (shown as
the black horizontal line). (e) The corresponding phase diagram exhibits four regions, where the thick black line indicates the loci
of saddle-node bifurcations. (f) Steady state bifurcation diagram including inhomogeneous solutions. The adhesion density at the
leading edge a(u+) is shown as a function of the on-rateR, obtained by numerical continuation. Black lines belong to
homogeneous states, red ones are associated with polarized states. Solid/dashed lines indicate stable/unstable states. Diamonds
represents saddle-node and triangles pitchfork bifurcations. (g) Corresponding adhesion profiles atR= 3.0 in (f). Solid/dashed
states are stable/unstable.

For the remainder of this article, we use a dimensionless polymerization speed of vp = 0.1, which
corresponds to 0.1 µm s−1 as typical order of magnitude experimentally observed for various cell types [12,
43]. As discussed above, we use D= 0.1 µm2 s−1 leading to a dimensionless diffusion coefficient of
D = 0.01. This and the estimates of the other parameters are available in appendix B and imply L= 1.0,
σact = 0.1 and F = 0.16. The baseline frictionA is an effective parameter and cannot be directly inferred
from experiments. It serves a regularizing function and, as we will show in the following section, should be
sufficiently small. In the following we will then useA= 0.1. The binding parameterR acts as main
continuation parameter and is not fixed to a specific value. The expected value is of the order of one.

2.3. Adhesion-based mechanism for polarization
Without polymerization a homogeneous stress state, determined by the active stress σ(u) = σact, satisfies
equations (9a) and (9b) independently of the adhesion density. As a result, there is no actin flow, leading to
l̇± = 0 and ṽ= 0. The steady state of the adhesion is implicitly described by the equation

0=R− exp

(
1

F
σact

A+ a(u)

)
a(u)+

D
L2

∂2
ua(u) , (10)

where the BCs simplify to ∂ua(u±) = 0. First, we analyse uniform solutions, ∂ua= 0, such that the diffusion
term vanishes. Equation (10) then characterizes the local balance of binding and unbinding.

Figures 2(a)–(d) illustrate the four qualitatively distinct cases which arise in this situation when varying
R (black horizontal lines) andA, i.e. binding and unbinding. In (a), the unbinding rate increases
monotonically with a and the only feasible steady state occurs at the intersection of the two curves at low
adhesion. Since the baseline adhesionA is large, load sharing is suppressed for small a. Reducing baseline
adhesionA below a critical value in figure 2(b), the detachment rate becomes non-monotonous in a due to
load sharing. Nonetheless, with the chosen on-rateR= 1.0, only one state is accessible. We term this low
adhesion state ‘detached’. As the on-rate increases in figure 2(c), we enter a regime of multiple solutions
through a saddle-node bifurcation. Now the system displays bistability between the detached and a strongly
attached state. With an even larger on-rate in figure 2(d), only the strongly attached state persists. In
figure 2(e), we present the full phase diagram. The thick black lines indicate the loci of saddle-node
bifurcations, where two solutions emerge, when transitioning from (b) to (c), and, subsequently, annihilate
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each other from (c) to (d). This analysis is similar to the bifurcation analysis of the standard model for
adhesion contacts with mechanosensitive dissociation rates [22, 23, 28], but differs in the existence of a
baseline friction.

To investigate the behaviour of steady states in the full, spatially resolved model, we performed numerical
continuation of the homogeneous state [51]. We consider the adhesion density at the right cell edge a(u+) in
order to capture spatially inhomogeneous and symmetry-broken solutions of equation (10). In the
bifurcation diagram in figure 2(f), we plot it as a function of the on-rateR. The black curves represent the
discussed homogeneous steady states, where stable (unstable) states are indicated by solid (dashed) lines. The
existence of this bistable regime forms the basis of the polarization mechanism presented here: different
regions of the cell might be locally in balance either in the detached or attached state. The diffusion term
then introduces a spatial coupling and connects these different regions to form smooth adhesion profiles.
Because diffusion generally suppresses spatial inhomogeneities, it must be sufficiently slow for such solutions
to exist. For the standard valueD = 0.01 used here, two inhomogeneous branches (red) bifurcate from the
unstable homogeneous branch, where the upper (lower) branch is associated with more adhesion at the right
(left) edge of the cell. The further the system deviates from the homogeneous state, the stronger the
polarization becomes. Corresponding adhesion profiles atR= 3.0 are shown in figure 2(g), where the
adhesion density at the one cell edge exceeds twice that at the other edge.

The emergence of pitchfork bifurcations and the corresponding solutions’ symmetry with respect to the
cell’s midpoint, reflects the left-right symmetry inherent in the underlying equations. This symmetry is
subsequently spontaneously broken, with stronger polarization as diffusion slows down. As it is typical for
diffusive systems, higher order modes with additional peaks emerge when diffusion is reduced further.
However, in the context of motility, only the first mode, which is depicted here, is relevant.

So far, our analysis has focused only on adhesion, neglecting its coupling to cell mechanics. Most
importantly, the analysis from figure 2 indicates that adhesion might lead to rich dynamics. However, if not
complemented by other processes, the only stable solution is a sessile state without persistent SSB. Linear
stability analysis (cf appendix C) shows that without a finite value of the polymerization velocity vp, the
adhesion density is a second-order effect around the homogeneous stress base state σ(u) = σact with
L= 1−σact. The stress and length relax toward this state independently of the adhesion perturbation, at least
up to first order perturbations. In finite volume simulations [52], we observed a relaxation even for initial
conditions far away from this state, in agreement to previous results without the additional adhesion field
[19]. Symmetry broken initial conditions result in a transient directed movement, but the cell eventually
comes to a rest because all polarized states are unstable (cf figure 2(g)). These results indicate that the
uniform, non-motile state is globally stable and the stress must be forced out of its homogeneous state by
other means. We now show that stable SSB and persistent motility can be obtained by combining the binding
dynamics analysed above with symmetric edge polymerization.

2.4. Motile solutions in presence of polymerization
Now considering the full system, equations (9a)–(9e), any finite polymerization velocity vp > 0 induces flow
at the boundaries. Consequently, ∂uσ(u) ̸= 0, and a constant stress profile is no longer a valid solution of the
problem. The adhesion density then becomes pertinent in the stress equation (9a), in particular impacting
the steady state solutions. In this sense, polymerization disrupts the uniform solution and adhesion can
emerge as a first order effect around the former uniform steady state. Despite the feedback loop between
stress σ and adhesion a via the mechanosensitive off-rate, the fundamental structure of steady-state solutions
in figure 2(f), characterized by the presence of multiple solutions and the appearance of asymmetric
branches, remains intact. Therefore, we can understand the mechanism underlying motility based on the
analysis in the preceding section.

In figure 3(a), the cell length L is depicted as a function of the on-rateR, now with a finite
polymerization velocity (vp = 0.1). We observe a similar structural pattern as in figure 2(f), where multiple
solutions are present within an intermediate range ofR. Figure 3(b) illustrates the relation between L and
the total adhesion density atot =

´ 1
0 a(u)du. For very weak adhesion, the length remains almost independent

of atot due to the dominance of baseline frictionA= 0.1. Toward larger adhesion, length increases nearly
linearly with adhesion, i.e. our model correctly predicts spreading of adherent cells on typical culture
substrates [53]. It is worth noting that even for atot = 0, the steady-state length has increased compared to the
case without polymerization. This occurs because both the baseline frictionA and the intrinsic viscosity of
the actin network, represented by L, slow down retrograde flow.

Polarized branches are now associated with directed migration. In figure 3(c), we illustrate the
steady-state velocity V as a function of the on-rate, with motile branches highlighted in red (for reasons of
clarity, motile branches are not shown in panels (a) and (b)). In this representation, all symmetric branches
collapse to a single line V = 0. Compared to figure 2(f), two saddle-node bifurcations occur on each

6
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Figure 3. Polymerization stabilizes migration in the full model. (a) Steady state cell length L of sessile states as function of the
on-rateR demonstrates multistability. (b) Cell length L as function of the integrated adhesion density atot shows an overall linear
relation, but also multistability. For intermediate adhesiveness, three stable sessile states exist: weakly, moderately and strongly
attached. (c) Bistability in the cell velocity V between motile states in red and the three sessile states (V = 0) in black. Diamonds
represent saddle-node and triangles pitchfork bifurcations. (d) Corresponding adhesion profiles atR= 1.3. (e) Kymograph of
the sessile state. Adhesion density is color-coded and retrograde actin flow is indicated by red lines. (f) Kymograph of the stable
motile state. (g) Phase diagram in on-rateR (‘binding’) and inverse rupture force F−1 (‘unbinding’) shows bistable region, in
which stable migration occurs. Thick black lines indicate the loci of the saddle-node bifurcations on the motile branches (red) in
(c).

polarized branch, enclosing a stable region. The corresponding adhesion profiles atR= 1.3 are depicted in
figure 3(d), where only one of the three stable sessile solutions is shown (bottom right in black). Similarly to
before, both a detached and a strongly attached state persist as well. Figures 3(e) and (f) show kymographs of
the sessile and motile state, respectively, obtained by finite volume simulations. In both cases, the adhesion
profile stays constant over time, confirming that both of them represent steady states of our system. Finally
Figure 3(g) shows the full phase diagram, demonstrating that motile solutions are possible if adhesion is
complemented by polymerization.

2.5. Comparision with experimental observations
Our theoretical results are in good qualitative agreement with experimental observations. We first note that
our system exhibits true bistability between a motile and multiple sessile states, as observed for different cell
types migrating on both 2D substrates [4, 43] and on 1D tracks under lateral confinement [8, 11]. The
border between the sessile and bistable regime in the phase space diagram in figure 3(g) is given by the loci of
the saddle-node bifurcations on the motile branches. As explained before, a minimal inverse rupture force
F−1 is required to achieve polarization. Because the bistable regime extends along the diagonal in
figure 3(g), we conclude that binding and unbinding have to be in balance to enable motility. Away from this
region, only sessile solutions exist. Below we will investigate switching between these states by applying
external perturbations.

We next note that in the stable motile states, adhesion is strongly polarized, with strong adhesion at the
front and low adhesion at the back, as observed in experiments [12, 39, 54]. This asymmetry in adhesion
distribution leads to the differential rates of retrograde flow between the front and back regions of the cell,
facilitating effective forward propulsion through polymerization-driven membrane protrusion. As new
adhesive bonds need time to form in the flow, adhesion density peaks near the cell center. It slightly
diminishes toward the leading edge as observed, for instance, in MDA-MB-231 cells [12]. Actomyosin
contraction and membrane tension drive retrograde flow, surpassing the speed of polymerization at the back
of the cell, allowing for efficient rear retraction with minimal adhesive resistance. Upon comparison with
unstable states, it becomes apparent that both an overall adhesion polarity and the absence of adhesion at the
rear are crucial for sustaining efficient cellular migration.

7
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We finally note that in mesenchymal motility, a biphasic adhesion–velocity relation has been measured
across various cell types, representing a universal principle in cell migration, where a maximum migration
velocity occurs at intermediate ligand concentrations on the substrate [12, 43, 55]. In our model, motility is
only feasible in a regime of intermediate on-rateR, recapitulating the property of an optimal adhesiveness: if
adhesion is too low (detached state), active processes solely generate retrograde flow, but fail to transmit their
forces to the substrate. Conversely, excessive adhesion prevents the detachment of adhesive bonds at the rear,
resulting in a stalled cell. Accordingly, increasing (decreasing) the polymerization speed, as one of the two
force-generating processes, shifts the motile regime to larger (smaller) values of the on-rate. Even minor
adjustments in vp can significantly impact the range of motility inR due to the exponential coupling
between stress and detachment rate.

3. Effect of external perturbations in adhesion

To demonstrate the bistable nature of our model and the role of adhesion in motility initiation, we
investigate switching from a sessile to a migrating state by applying an asymmetric perturbation to the
adhesion density. This perturbation is implemented in a finite volume simulation by setting the adhesion
density to zero over a certain fraction of the cell length at a certain point in time (t= 0), corresponding to a
complete loss of adhesion to the substrate, and observing the temporal evolution. From the experimental
perspective, this means to disrupt adhesion without destroying the actin network itself or impair the
adhesiveness of the substrate, such that the on-rateR in our model remains the same.

In figure 4(a) adhesion is ‘erased’ on a small interval of 5% of the initial cell length at the left edge.
Because friction is drastically reduced in this area, retrograde flow increases and causes a transient, small
retraction of this non-adhesive edge (upper panel). This is accompanied by an immediate positive spike in
the cell velocity (lower panel), corresponding to the onset of movement to the right, i.e. to the side of
stronger adhesion. However, adhesion manages to quickly recover because the overall adhesion density is
only slightly affected. The recovery is only possible due to the spatial coupling and the diffusion of adhesion
from strongly to weakly attached regions. Simultaneously, the velocity decreases exponentially to zero (lower
panel), exactly as one would expect from linear stability analysis in the proximity of a stable state. The
velocity actually exceeds the steady migration velocity immediately after the perturbation, but cell length and
adhesion profile are too far from the migratory state.

To escape the basin of attraction of the sessile state, the applied perturbation has to be stronger. By
disrupting adhesion over 30% of the cell length in the prospective rear, as shown in figure 4(b), a non-local
effect can be seen in the actin flow, which exhibits a kink toward the right even far from the perturbed region.
Thus, an overall movement to the right is initiated. Interestingly, the adhesion density on the non-perturbed
edge is also reduced because new bonds have to form at the very leading edge during migration, as explained
in the previous section. Both effects are facilitated by the non-local coupling of the cell edges through the
membrane tension, represented in the symmetric stress BCs (9b). The initial spike in velocity is actually of
the same magnitude as for the weak perturbation. However, instead of subsequently decreasing toward zero,
it approaches the steady migrating velocity (lower panel). The adhesion recovers to a small degree closer to
the cell middle and then develops into the stable state (cf figure 3(d), top left) with a non-adhesive rear and
an overall polarization.

A very strong perturbation, where adhesion is erased over 95% of the cell length, as investigated in
figure 4(c), leads again to a initial velocity spike of the same order as for the two previous cases. The cell
enters a transient state, during which it migrates with a similar velocity as in (b), but the adhesion profile is
quite different. Eventually, the remaining adhesion at the leading tip cannot withstand the active forces and
diminishes rapidly, in the shown example around t= 1. Therefore, the velocity decays exponentially and the
movement stops (lower panel). In contrast to panel (a), the cells ends up in the detached state. It should be
noted that the bulk properties are not immediately reflected in the current cell length and velocity right after
the perturbation, but they are highly relevant in determining the long-term behaviour and final state. This
prediction is only possible in a spatially resolved model and highlights the benefits of our continuum
approach compared to previously proposed point-like descriptions.

In conclusion, a sufficiently strong polarization has to be established to switch to the motile state without
reducing the overall adhesion density too much. Then, the cell edge losing adhesion becomes the prospective
trailing rear. In practise, cells are subject to strong thermal noise [8, 11], which can cause the switching
between states, here shown in a purely deterministic theory. In principle, optogenetics could be used for such
manipulations as well and have been recently applied to regulate talin as a mechanical linker in cell-matrix
adhesions [56]. The instantaneous disruption of adhesion can easily be extended to a time-integrated signal
resembling the effect of optogenetics within our framework.
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Figure 4.Motility initiation via external perturbation: starting in the strongly attached state, adhesion is destroyed over the left (a)
5%, (b) 30% and (c) 95% of the cell length at t= 0. The upper panels show the corresponding kymographs in the lab frame x
with color-coded adhesion density. The actin flow is indicated as red lines, the perturbation as horizontal bars in cyan. Lower
panels show the cell velocity as function of time, where the grey line represents the stable migratory steady state.

Our observations demonstrate the pivotal role of adhesion in establishing global polarity and initiating
motility without previous polarization of the actomyosin system itself. Furthermore, it supports the
hypothesis that the cell rear can be defined by sudden detachment [11]. Because in this purely mechanical
model without a direct or indirect positive correlation between polymerization and adhesion assembly, edge
polymerization alone would not be able to create a stable leading edge. Even though an asymmetric increase
in polymerization would indeed create a transient protrusion and migration in the corresponding direction,
the created stresses accelerate adhesion detachment at this side. As soon as polymerization goes back to its
symmetric configuration, the movement stops or even reverts. To compensate this effect one could consider
catch-bond behaviour for small stresses, where the off-rate decreases under small load, or directly couple
adhesion and polymerization. Such an interaction was experimentally observed [57] and could be mediated
e.g. by the Arp2/3 complex, facilitating both actin polymerization and adhesion formation [58, 59].

4. Effect of patterning adhesion

Finally, we analyse the behaviour of cells in a structured environment, including adhesive steps [12, 43] and
continuous gradients of adhesiveness [40]. We introduce a spatial dependence of the on-rate and assume that
this adhesive cue is substrate-bound and stays constant over time, i.e. it is neither consumed or produced by
the cell itself. The guiding by such an adhesive cue is called haptotaxis.

4.1. Haptotaxis on adhesive gradients
To demonstrate the basic principles of haptotaxis in our model, we first analyse the behaviour on constant
gradients within and outside the intrinsic motile regime. In figures 5(a)–(c), we choose a characteristic
rupture force of F−1 = 4.0 such that, regardless of the on-rate, only one sessile state exists (cf figure 3(g)).
Nevertheless, the cell is able to follow the gradient in the on-rate uphill (here∇R= 1.0), because the
heterogeneous environment creates polarization within the initially symmetric cell. The lower part of panel
(b) shows the adhesion profiles over time. Since the gradient is constant, the polarity and shape of these
profiles are almost identical, neglecting an overall adhesion density increase. The cell length increases, while
the migration speed (upper panel in (b)) deteriorates. An increased adhesion must be overcome at the cell
rear, impeding retraction in the rear. Additionally, larger stress gradients facilitate retrograde flow at both
edges. Thus, we observe the same trend as in the motile regime, where the largest velocities occur for the
smallest possible on-rate (cf figure 3(c)).

The dynamical behaviour, obtained with finite volume simulations, can be approximated in a
‘quasi-static’ manner (dashed lines in figure 5(b)). Numerical continuation allows us to predict the steady
state corresponding to the current environment, namely the gradient and the absolute on-rate e.g. at the cell
middle. The cell will never reach this state in a dynamical situation because the absolute on-rate changes
permanently during migration. However, since both the velocity curves and adhesion profiles agree very
nicely after an initial phase, we can turn the setup in the quasi-static approximation around and predict the
velocity and adhesion profiles as a function of the gradient given the absolute on-rate value. The polarity
increases with the gradient as expected (cf lower panel in figure 5(c)). However, we observe a nonlinear
velocity-gradient relation, where the increase in velocity decreases for larger gradients. The overall growth in

9



New J. Phys. 26 (2024) 073039 V Wössner et al

Figure 5. Haptotaxis on continuous gradients. (a)–(c) Outside the intrinsic motile regime. (a) The upper panel shows a sketch of
a cell on a constant gradient of the on-rate, which is depicted in the middle panel. The lower panel displays the kymograph with
color-coded adhesion density and actin flow in red. (b) Corresponding cell velocity (top) and adhesion profiles at different time
points (bottom). The quasi-static approximation is obtained by numerical continuation. (c) Quasi-static approximation of the
velocity as a function of the gradient (top) and corresponding adhesion profiles (bottom) for fixed on-rate at the trailing edge of
R(u−) = 1.3. (d) Bifurcation diagram of the steady state velocity V within the intrinsic motile regime for a small external
gradient in the on-rate of∇R= 0.01. The x-axis shows the values of the on-rate at the cell middle u= 0.5. This perturbation
results in imperfect bifurcations (inset) and disconnected branches (black and red).

adhesion density limits the increase in velocity. In particular, adhesion gets significantly stronger at the
trailing edge, even though the on-rate is kept constant there. This is mainly caused by diffusion, which
becomes more relevant for larger adhesion values, and to a smaller amount by the effective advection.

Applying a small gradient within the intrinsic motile regime for F−1 = 6.25 perturbs the bifurcation
diagram, as obtained in figure 3(c). Any small but finite gradient breaks the underlying left-right symmetry
and, therefore, converts the former pitchfork to imperfect bifurcations, such that the positive and negative
velocity branches become disconnected (cf inset in figure 5(d) for∇R= 0.01). This is accompanied by an
overall shift in velocity, in this case upward since the gradient promotes migration to the right. However, the
cell can still migrate against such a small gradient. Above a critical value, which is around∇R≈ 0.1, this is
no longer possible. Interestingly, the maximum possible migration speeds of both intrinsic and externally
driven migration as well as their combination are always of the same order of around 0.03. This highlights
the fact that the velocity is determined by the forces generated within the cell, which are in turn controlled by
the active processes, which we kept constant here. Thus, even though external cues can steer migration, it is
powered by the cell itself.

4.2. Motility initiation on lines with adhesive steps
After having established the basic haptotactic behaviour of cells preferring stronger adhesiveness, we now
consider an initially completely non-adherent cell on top of an adhesive step. This is schematically illustrated
in the top panel of figure 6(a) with the corresponding on-rateR below. For the larger on-rate on the right
side of the step, the system is within the multistable regime with a stably migrating steady state. On the left
side, the system is slightly below the critical value, such that the only available steady state is the detached
state. In the beginning at t= 0, adhesive bonds form almost homogeneously over the complete cell length and
spreading occurs symmetrically to both sides due to polymerization, which in turn drives retrograde actin
flow. When the cell reaches its maximum length (cf bottom panel in (b)) and therefore the boundary stress
peaks, the adhesion density stagnates and subsequently decreases. However, while on the right side a stable
density is achieved, the left half of the cell loses more and more traction. This is accompanied by a slight shift
in actin flow to the right, until a critical density on the left edge is reached and a rupture cascade causes the
sudden loss of adhesion at the rear, in the shown example at around t= 14, resulting in a steep increase of
velocity. A global polarization has now been established and the cell migrates to the right, as expected.

When the cell gradually enters into a region of higher adhesion density, the non-adhesive rear shrinks in
size and overall adhesion rises again. However, even after the cell has completely crossed the step, polarity
remains intact in a now homogeneous environment. Therefore, a sufficiently steep step in the correct regime
of adhesiveness provides another initiation mechanism to switch into the migratory state. Key to this
permanent polarization is that on the less adhesive side only the detached state is available, while the right
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Figure 6. Polarization and motility initiation on an adhesive step. (a) Sketch of the protocol (top), spatially dependent on-rate
(middle) and kymograph with color-coded adhesion density and actin flow indicated by red lines (bottom). The cell is initialized
without any adhesion and a length of L= 0.9. (b) Corresponding integrated adhesion density (top), cell velocity V (middle) and
cell length L (bottom) as functions of time. Grey lines represent the stable migratory steady state.

part is within the motile regime (cf figure 3(c)). Based on our findings in section 3 on motility initiation via
an external perturbation, we conclude that a sufficiently large fraction has to be exposed to the less adhesive
region to form the prospective non-adhesive rear. If this was not the case, the cell would still show
haptotactic behaviour by sensing and entering the more adhesive region, but would stop right after the step.

4.3. Motility arrest and direction reversal
After studying motility initiation, we now turn to the opposite process, when a migrating cell approaches a
step downwards in adhesiveness. In principle, three distinct scenarios are known from experiments [8, 12]:
the cell continues to migrate in the same direction, the movement is stopped or the direction is reversed
under repolarization of the cell.

All three cases occur in our model, as demonstrated in figure 7, depending on the initial migrating state
and on the step size. In figure 7(a), the on-rate is reduced by 10% across the step. While the cell passes the
step, the adhesion density is gradually reduced from front to back leading to a transient weakening of the
polarization and therefore a reduction of the velocity. Once the cell has completed the step, overall adhesion
is obviously less compared to the initial state, but the velocity has increased, in agreement with the
bifurcation diagram in figure 3(c), where motile states are faster for smaller on-rates.

In figure 7(b) we observe a motility arrest for a step size of 20%. The on-rate ofR= 1.12 after the step is
not within the motile regime anymore, such that complete passing is not achievable. The leading edge
transiently crosses into the less adhesive region, similar to the ‘passing’ case in panel (a). However, adhesion
at the cell front is significantly more reduced, facilitating retrograde flow. Thus, protrusion speed is slowed
down, even before the polarization is lost, concomitantly with a shortening of the cell length. This in turn
reduces the stress at the cell edges, until a critical point around t= 30. Then, the on-rate excels the off-rate at
the rear, leading to a rapid growth in adhesion and an arrest of the directed movement. In agreement with
our observation of haptotaxis in the previous section, the unpolarized cell prefers the highly adhesive region
and slowly returns to the left side of the step. The observed fast adaptation demonstrates the local
cooperativity of adhesive bonds. In contrast to an advective mechanism based on intracellular transport, this
allows a cell to sense its environment very fast and efficiently.

For complete repolarization and reversal of direction, the former front of the cell must switch to the
detached state. Increasing the step size further to 30% leads to the expected effect, as shown in figure 7(c):
subsequently to the formation of strong adhesion at the former rear, the cell length and the stress at the edges
start to grow again, causing a rupture cascade at the right edge and a reversal of actin flow. The repolarized
cell migrates in the opposite direction and polarity remains intact after crossing back into a homogeneous
environment. Larger steps accelerate the repolarization process but result in the same qualitative behaviour
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Figure 7.Motility arrest and reversal at an adhesive step. A stably migrating cell approaches a step in the on-rate (top) from
R= 1.4 down to (a) 90%, (b) 80% and (c) 70%. Kymographs show color-coded adhesion density and actin flow indicated by red
lines. The cell will pass small steps, migration stops for intermediate steps and it is reverted under repolarization of the adhesion
density for large steps. The bottom row shows the corresponding cell velocity V over time. The sessile state with V = 0 is indicated
in grey.

of reversal. This behaviour cannot be predicted solely by the known steady states, since the dynamical length
changes play a crucial role, demonstrated by the qualitative difference between (b) and (c), where in both
cases the only accessible steady state in the less-adhesive region is the sessile, detached state. However, only in
(c) we observe full repolarization. The intricate interplay of length, velocity, and cell fraction beyond the step
boundary, with the effected bond rupture behaviour, necessitates a one-dimensional representation of the
cell. This constitutes a strength of our spatially resolved one-dimensional approach. For every pair of left and
right on-rates a dynamical simulation can be conducted to obtain predictions.

5. Discussion

In this work, we have shown how active gel theory can be extended by a dynamic adhesion field in a 1D
setting. Similarly to the molecular clutch model, actin flow is slowed down by adhesive contacts to the
substrate; but differently from standard molecular clutch models, the direction of flow is not assumed, but
predicted by our theory. Our model demonstrates that the interplay between local load sharing between
mechanosensitive bonds and initially symmetric polymerization-driven retrograde flow leads to SSB. Thus
our theory identifies a novel polarization and motility mechanism for 1D cell migration. Because the model
gives clear predictions on actin flow and adhesion dynamics, it can be compared directly to experiments. In
fact, the predicted ranges of migration speeds and adhesion profiles are in very good agreement with
experimental measurements of cells on 1D lines. In agreement with experimental observations, our model
exhibits bistability between sessile and motile states. We have demonstrated how local perturbations in
adhesion can induce switching and have highlighted the potential role of adhesion in motility initiation.
While the adhesion density close to the boundary determines the current edge movement, bulk properties
dictate the long-term behaviour and convergence toward a steady state. This distinction is only possible due
to our continuum framework.

By introducing a spatial dependence of the binding rate in our model, we are able to describe
heterogeneities and especially gradients and steps in substrate adhesiveness. Our model qualitatively captures
the haptotactic behaviour of cells to prefer more adhesive regions. On continuous gradients, we have
analysed migration within and outside of the intrinsic motile regime. In a quasi-static approximation we
have access to the full bifurcation diagram. Predicted velocities and adhesion profiles agree very well with full
dynamical simulations. For discontinuous steps in the adhesiveness, we were able to qualitatively reproduce
experimentally observed directional reversal and repolarization. While the cooperativity of bonds is very
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sensitive to local environmental changes, the non-local elastic boundary condition provides a fast
communication between both cell ends. Together, these two mechanism allow for a fast decision making on
structured patterns. In addition to patterned substrates as external stimulus, direct manipulation of adhesion
bonds by means of optogenetics [56] presents another exciting possibility, which could be included in our
model, to better understand the dynamic organization of adhesion.

Since we have assumed an active stress that is constant in space and time, actomyosin contraction only
acts in the background and does not drive SSB by itself. However, adding a dynamic myosin concentration
field, as done e.g. in [34], could lead to more complex behaviour, such as oscillatory stick-slip migration [8,
11]. Furthermore, it would become possible to compare the timescales needed to establish adhesion and
myosin polarity. This could greatly enhance our understanding of SSB in real cells and how the different
components of the cytoskeleton interact. On the other hand, one could incorporate more details into the
binding dynamics, e.g. by considering catch-bond behaviour [28, 60] or mechanosensitive adhesion bond
recruitment from reservoirs [61], which both might play a role in the interplay of actin flow and maturation
of focal adhesions [57]. Finally, it would be interesting to extend the 1D-theory presented here to 2D, for
example to describe the movement of keratocytes and lamellipodial fragments [62–64].
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Appendix A. Derivation of boundary conditions for the adhesion density

We consider two species: bound ab(x, t) and unbound au(x, t) adhesion sites. Both densities change due to
(un)binding, diffusion and, in addition, unbound sites are advected with the actin gel’s velocity v. The
dynamic equations then read

∂tab =+r̃onau − roffab +Db∂
2
xab, (A.1)

∂tau + ∂x (vau) =−r̃onau + roffab +Du∂
2
xau. (A.2)

Without turnover, the total number of adhesion sites
´ l+
l−

atotdx, with atot = ab + au, has to be conserved. To
take into account the movement of the boundaries, we have to apply the Leibniz integral rule. Then, the
conservation condition implies

0=
d

dt

ˆ l+

l−

atotdx (A.3)

= l̇+atot (l+)− l̇−atot (l−)+

ˆ l+

l−

∂tatotdx. (A.4)

The local change of the total adhesion density is given by the sum of equations (A.1) and (A.2). The binding
terms cancel each other and we are left with

0= l̇+ab (l+)− l̇−ab (l−)+Db∂x (ab (l+)− ab (l−))+Du∂x (au (l+)− au (l−)) . (A.5)

Now, assuming an infinite reservoir of unbound sites, as explained in section 2, the last term of the above
equation can be neglected. As a result, we obtain Robin-type BCs for ab at each cell edge

∂xab (l±) =− l̇±
Db

ab (l±) , (A.6)

with the ratio of membrane movement and diffusion. By redefining ron = k̃onau, we obtain equation (4) from
equation (A.1).
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Table B1. Physical parameters assumed in our model.

Cell parameters

Actin polymerization speed vp 0.1 µms−1 measured in [35, 43]
Cell cortex stiffness k 104 Pa estimated in [17]
Contractility σact 103 Pa used in [17, 19] based on [43, 65]
Bulk viscosity η 105 Pa s estimated in [17, 43]
Cell rest length L0 10 µm typical order e.g. in [4]
Effective friction coefficient ξ 2 Pa s estimated based on [43]

Bond parameters

On-rate ron 50 /(s µm2) estimated in this work,
similar considerations in [28]

Off-rate without load r0 0.1 s−1 similar values used in [7, 28, 43],
measured in [66]

Typical rupture force f 0 2 pN measured in [30, 67],
similar values in [7, 28]

Baseline bond density a0 50 /µm2 estimated in this work
Diffusion D 0.1 µm2s−1 estimated in this work,

similar values used in [43, 68]

Table B2. Dimensionless parameters derived from the physical parameters given in table B1.

Cell parameters

Actin polymerization speed vp 0.1
Contractility σact 0.1
Relative viscous time scale L 1.0

Bond parameters

On-rateR continuation parameter, expected range 0.1–10.0
Rupture force F 0.1 (0.16 used in simulations)
Baseline bond densityA 0.1
DiffusionD 0.01

Appendix B. Parameter estimates

The following estimates are made for a thin two-dimensional slab of material. The cell is assumed to be
homogeneous in the direction orthogonal to its direction of movement, such that our model is effectively a
one-dimensional problem. Nevertheless, stresses are still given in units of force per area and bond density is
also measured per area. This allows also for easier comparison to experimental measurements.

The cell parameters (cf table B1 top) are taken from either experimental measurements or from similar
models, except for the effective friction coefficient, which is derived below. The off-rate without load r0 and
the typical rupture force f 0 of bonds (cf table B1 bottom) have already been estimated in other models,
partly based on experimental measurement. To obtain a reasonable value for the effective friction coefficient
ξ in our model, we consider the intermediate friction regime from [43], ξ̃ = 1015 Pa s/m2. The typical order
of stress in our system is given by the active contractility of σact = 103 Pa. In a motile state, the force per bond
should be in the order of the typical rupture force of f 0 = 2 pN, such that sufficiently strong binding can
occur without stalling the cell. Then, we can estimate the bond density

a=
σact

f0
= 5 · 102/µm2, (B.1)

which is the same order of magnitude as experimentally measured [49]. From this value, we obtain the
friction coefficient

ξ =
ξ̃

a
= 2 Pa s. (B.2)

Under steady state conditions, binding and unbinding should be balanced

ron = a · roff ≈ a · r0 = 50/
(
s µm2

)
. (B.3)
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Since we use the on-rate as our continuation parameter, this approximation just provides a rough estimation
of the expected order of magnitude.

The diffusion constant Dmust be smaller than a critical value to allow for polarization, which is the case
for the chosen value of 0.1 µm2 s−1, while it is still larger than experimental measurements suggest for
integrins in adhesions [49]. However, one should consider that our model is 1D, while the measured value
corresponds to a 2D diffusion process. The baseline bond density a0 is an effective parameter, without a
direct accessible counterpart in real cells. As discussed in the section 2.1, it stabilizes the system and is chosen
sufficiently small to allow for bistability. The chosen value of a0 = 50/µm2 would correspond to 10% of the
expected dynamical adhesion bond density a.

Appendix C. Linear stability analysis without polymerization

We consider the uniform steady state with stress σ(u) = σact and length L= 1−σact, which is always a
solution of the equations (9a)–(9c), independent of the values of the other parameters and of the adhesion

density a, which is implicitly given byR= exp
(

1
F

σact
A+a

)
a.

We now want to analyse the behaviour of the stress, when applying small perturbations δσ(u, t), δa(u, t)
and δL(t). Plugging these perturbations into equation (9a) yields

L2

(L+ δL)2
∂u

∂u (σ+ δσ)

A+ a+ δa
= δσ. (C.1)

Since the considered steady state is uniform in σ and a, in first order of δ, the expression simplifies to

L2

L2
∂2
uδσ

A+ a
= δσ, (C.2)

which is independent of δa. Therefore, the general solution is given by δσ(u, t) = A(t)cosh(γ(u− 0.5))+
B(t) sinh(γ(u− 0.5)) with the definition γ = L/L

√
(A+ a). The coefficients A and B are determined by

the perturbed boundary condition (9b)

δσ (u±, t) =−δL(t) . (C.3)

Then, we can derive

δσ (u, t) =− δL(t)

cosh(γ/2)
cosh(γ (u− 0.5)) . (C.4)

Plugging the derivative of equation (C.4) into the linearized kinematic boundary condition (9c)

δ l̇± (t) =
∂uδσ (u±, t)

L(A+ a)
, (C.5)

yields the time evolution of the length perturbation

δL(t) = δL0 exp(−αt) (C.6)

with δL0 = δL(t= 0) and α= 2
L
√
A+a

tanh(γ/2). This describes an exponential decay toward zero and

therefore also the stress perturbation in (C.4) decays. Thus, the evolution of δσ is completely unrelated to δa,
at least up to first order around homogeneous base states. In this sense, the adhesion density is a second
order effect.

Even when considering a base state with a non-uniform adhesion profile, like the ones found in
figure 2(g), a perturbation δa would vanish in the equations (9a) and (9c) in first order as long as the base
state is uniform in the stress.
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